茉莉网

传感器定位技术可用于 无线传感器网络定位技术综述 GPS/惯性传感器都有啥作用

2017年09月16日 来源:传感器定位技术可用于 大字体小字体

后摄像头 蓝牙 WCDMA 支持通话短信功能 支持

  基于非测距的算法与测距法的区别在于前者不直接对距离进行测量,而是使用网络的连通度来估计节点距锚节点的距离或坐标,由于方法的不确定性,基于非测距的方法众多。下面按时间顺序,介绍部分典型非测距定位算法。

  AOA测距技术依靠在节点上安装天线阵列来获得角度信息。由于大部分节点的天线都是全向的,无法区分信号来自于哪个方向。因此该技术需要特殊的硬件设备如天线阵列或有向天线等来支持。

油量传感器 供应GPS油量传感器新能源

  ?惯性传感器的问题

  缺点:1)锚节点数量需求多。由于RSSI值在实际应用中的规律性较差,使得利用RSSI信息进行定位的算法在定位精度以及实用性上存在缺陷。所以为了达到较高的定位精度,利用RSSI信息进行定位的算法通常需要较多数量的锚节点。2)多路径反射、非视线问题等因素都会影响距离测量的精度。

  如图3所示,多路径问题是指由于GPS信号的反射与折射造成信号传播时间的误差,这会导致定位的错误。特别在城市的环境中,空气中有许多悬浮介质会反射与折射GPS信号,另外信号也会在高楼大厦的外墙发生反射与折射,这些都造成距离测量的混乱。目前高精度的军用差分GPS,在静态和“理想”的环境下确实可以达到厘米级的精度。这里的“理想”环境是指大气中没有过多的悬浮介质,而且测量时GPS有较强的接收信号。然而无人车是在复杂的动态环境中行驶的,尤其是在大城市中,GPS多路径反射的问题会更加明显。这样得到的GPS定位信息很容易就有几米的误差,很有可能会导致交通事故发生。

新一代传感器网络成智慧城市建设基石 传感

  无线传感器网络数据融合技术

  ?差分GPS

无线传感器网络原理及应用第4章 定位技术pp

运动传感器gps跟踪免费在线软件围栏gps定

  关于AOA定位的文献比较少,最早提出在室内采集方向信息,并以此实现定位的方法,它的硬件部分包括微控制器、RF接收器、5个排成“V”型的超声波接收器,其测量误差精度为5°。随后,一些学者提出了在只有部分节点有定位能力的情况下确定所有节点的方向和位置信息的算法。

  3)基于接收信号强度的方法

  GPS和惯性传感器融合

  卡尔曼滤波器可以从一组有限的、包含噪声的物体位置的观察序列预测出物体的位置坐标及速度。它具有很强的鲁棒性,即使对物体位置的观测有误差,根据物体历史状态与当前对位置的观测,我们也可以较准确地推算出物体的位置。卡尔曼滤波器运行时主要分两个阶段:预测阶段基于上个时间点的位置信息去预测当前的位置信息;更新阶段通过当前对物体位置的观测去纠正位置预测,从而更新物体的位置。

  繁体版:傳感器定位技術

  如上所述,纵使有多路径等问题,GPS是一种相对精准的定位传感器,但更新频率低,并不能满足实时计算的要求。而惯性传感器的定位误差会随着运行时间增长,但由于其是高频传感器,在短时间内可以提供稳定的实时位置更新。所以我们只要找到一个方法能融合这两种传感器的优点,各取所长,就可以得到比较实时与精准的定位。下面我们讨论如何使用卡尔曼滤波器融合这两种传感器数据。

  InvenSense报道,华为最近发布的华为Mate8是第一款集成麒麟950处理器和IPL技术的智能手机。

  ?三边测量法定位

  缺点:传感节点最耗能的部分就是通信模块,所以装有天线阵列的节点的耗能、尺寸以及价格都要超过普通的传感节点,与无线传感器网络低成本和低能耗的特性相违背,所以实用性较差。

  GPS简介

    2)规模。不同的定位系统或算法也许可以在一栋楼房、一层建筑物或仅仅是一个房间内实现定位。

  2)GPS接收器成本比较高,给无线传感器网络中的每个节点配备一个GPS接收器,需要投入很大成本,尤其对于大规模的无线传感器网络来说不是很适合;

  RSSI是在已知发射功率的前提下,接收节点测量接收功率,计算传播损耗,并使用信号传播模型将损耗转化为距离。

  全球定位系统(GPS)是当前行车定位不可或缺的技术,在无人驾驶定位中也担负起相当重要的职责。GPS系统包括太空中的32颗GPS卫星,地面上1个主控站、3个数据注入站和5个监测站及作为用户端的GPS接收机。最少只需其中3颗卫星,就能迅速确定用户端在地球上所处的位置及海拔高度。现在民用GPS可以达到十米左右的定位精度。GPS系统使用低频讯号,纵使天候不佳仍能保持相当的讯号穿透性。下面解析GPS的运作原理和技术缺陷。

  ?卡尔曼滤波器简介

  图5展示了MEMS陀螺仪角速度计(MEMSgyroscope),其工作原理主要是利用角动量守恒,它是一个不停转动的物体,转轴指向不随承载它的支架的旋转而变化。与加速度计工作原理相似,陀螺仪的上层活动金属与下层金属形成电容。当陀螺仪转动时,它跟下面电容板之间的距离就会变化,上下电容也会因此而变化。电容的变化跟角速度成正比,由此我们可以测量当前的角速度。

  本文着重于以及惯性在中的应用。是当前行车定位不可或缺的技术,但是由于GPS的误差、多路径以及更新频率低等问题,我们不能只依赖于GPS进行定位。而惯性拥有很高的更新频率,可以跟GPS形成互补。而使用传感器融合技术,我们可以融合GPS与惯性传感器数据,各取所长,以达到较好的定位效果。

  图2差分GPS

     质心、DV-Hop、Amorphous和APIT算法是完全分布式的,仅需要少量通信和简单计算,具有良好的扩展性。无线传感器网络自身定位算法的性能对其可用性有直接的影响,如何评价定位算法是一个需要研究的问题。目前已有几个常用的标准,如定位精度、锚节点密度、未知节点密度、计算量、节点之间的通信量等,但这些标准还没有达到完善和统一的程度,需要进一步地模型化和量化。文献[6]中经过大量实验对比了4种分布式不基于测距的定位算法,其结果见表1。表1可以帮助加强对不基于测距的定位算法的理解以及促进完整评估体系的建立。

  在理论上,距离测量是个简单的过程,我们只需要用光速乘以信号传播时间就能得到距离信息。但是问题是测量的传播时间但凡有一点误差,都会造成距离上巨大的误差。我们日常使用的时钟是存在着一定的误差的,如果使用石英钟对传播时间进行测量,那么基于GPS的定位会有很大误差。为了解决这个问题,每颗卫星上都安装了原子钟以达到纳秒级的精度。而为了使卫星定位系统使用同步时钟,我们需要在所有接收机上也都安装原子钟。但原子钟的价格在几万美元的区间,让每一个GPS接收器安装如此昂贵的东西是不现实的。为了解决这一难题,可以在每一颗卫星上仍然使用原子钟,但在接收机上使用经常需要调校的普通石英钟。接收机接收来自四颗或更多卫星的信号并计算自身的误差,就可以将自身的时钟调整到统一时间值。

  2)基于信号到达角度的方法

  优点:能够取得不错的精度。

  优点:低成本。每个无线传感节点都具有通信模块,获取RSSI值十分容易,无需额外硬件。

  如上所述,卫星距离测量存在着卫星钟与播延迟导致的误差等问题。利用差分技术,我们可以消除或者降低这些误差,让GPS达到更高的精度。差分GPS的运作原理十分简单:如果两个GPS接收机都相当接近对方,那么两者的信号将具有几乎相同的误差,如果能精确地计算出第一个接收机的误差,我们就可以对第二个接收机的结果进行修正。

  一般情况下,TOA定位方法是利用检测接收信号中的直达路径的到达时间,来测量通信收发节点间的距离。因此,对直达路径信号到达时间的精确估计是至关重要的。本文所讨论的节点定位方法针对的是典型的无线传感器网络。一般来说,通过检测接收到信号的幅度是否最大来确定直达信号的到达时间,但是这种方法在多径条件下难以达到较高的测量精度。典型多径环境下的UWB接收信号如图1所示。直达信号(directpath)并非首次到达信号(firSTpath,与门限有关)或幅度最强信号(strONgestpath),因此在这种情况下,使用首次到达信号或幅度最强信号的到达时间都不能准确估计发射端节点和接收端节点之间的距离。可以利用最大似然估计法检测直达路径信号的到达时间来计算传感器节点之间的距离,但在复杂多径环境下容易造成信号波形的失真,因此有一定的实现难度。针对UWB直达信号难以精确检测的特点,本文提出通过对首次到达信号时间和最强信号时间进行加权来得到直达信号到达时间,其加权系数由模糊逻辑技术获得。

相关内容

编辑精选

Copyright © 2015 茉莉网 http://www.szmlwh.cn. All rights reserved.